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LETTER TO THE EDITOR 

Path integral scheme on a flexible time contour for random 
electron models 

E Kolley and W Kolley 
Sektion Physik, Karl Marx Universitat, DDR-7010 Leipzig, German Democratic Republic 

Received 2 December 1987 

Abstract. A field-theoretic time path approach to an interacting electron system with 
quenched site randomness is extended to a one-parameter variety of contours. The average 
generating functional for real-time finite-temperature Green functions is deduced. Propa- 
gators along the Keldysh contour and the Niemi-Semenoff contour are included as special 
cases. 

Time path ordered formulations [ 1-81 of the real-time finite-temperature field theory 
can be established by functional-integral representations [3-81 (especially for fermions 
[4, 6-81 and with quenched disorder [7, 81) along the Keldysh contour [l,  2 ,7 ,8]  or 
the Niemi-Semenoff contour [3,4,6]. Another approach achieved by operator doub- 
ling concerns thermofield dynamics [9,10]. Within the time path framework a contour 
varying by a free parameter as in [5,9, 111 is allowed due to analyticity. In this letter 
we extend the tight-binding version [8] to such a more general contour. 

Consider an electron system in the presence of disorder and interaction. The 
generating functional for real-time thermal Green functions can be represented by the 
path integral (cf [8]) 

over Grassmann variables & ( t )  and ci,(t) at lattice site i, spin (T and time t ,  so that 

9 c 9 c  = n Wi,( t ) 9 C i , (  t )  

The time contour Fe7 chosen here (see figure 1) consists of four segments: %(”( t ,  + t h )  
along the real axis, (e(3)( t b  + fh - i v )  parallel to the imaginary axis, (e(*)( rh - i v + f b  - i v )  
parallel to the real axis, and %‘(4)( to - iv + t ,  - ip) parallel to the imaginary axis, where 
Y E  (0, p )  with P being the inverse temperature. The partition function Z is defined 
by the normalisation Z[O, 01 = 1. The action in (1) is given by 

in terms of the Hamiltonian X including the chemical potential. The anticommuting 
sources + and x are assumed to be absent on (e(31 and (et4’, i.e. 
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Figure 1. The time contour V, 

The fermionic boundary conditions to (1) are 

ciu(ta)=-ciu(ta-iP) E i u ( t a )  = - & ( f a  -iP).  (3) 

We treat first the non-random and non-interacting case. Then, instead of ( 2 ) ,  the 
unperturbed action A, enters the exponent of ( 1 )  after the spatial Fourier transformation 
as 

A,[ E, c ]  + Ex + ,fc 

where i k  = &k - p involves the band energy 

1 
N ij 

&k =- tu exp[-ik(R, - 4 1 1  
( I fJ)  

where t ,  is the periodic hopping integral, p the chemical potential and N the number 
of sites. On the basis of (4) the resulting Gaussian functional integral for Z,[,f, x] is 
determined by the extrema1 trajectory which satisfies the equations of motion 

where a refers to time arguments on the segment %'a'. Analogous equations hold for 
EL) but with d / d t  replaced by -a/at. In solving ( 5 )  the fields on % ( 3 1  and %(4) can be 
eliminated via matching conditions at the points t b ,  t b  - i v and ta - i v. In particular, 
(3) becomes 

&:(la) = -exp[-(p - v ) i k ] C ' , 2 , ' ( t ,  - i v )  E(1) k u ( t a )  = -exp[(p - v ) i k ] c i z ( t a  - iv ) .  
( 6 )  

The solution of (5) at a = 1, 2 ,  under the first boundary condition of (6) and under 
the constraint 

c E ( t b )  =exp{vik}ci?(tb-iv) 
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is given by 

L335 

U 3 4 1  0 -1 0)). 

where 

G&(w) = ( w  - E k  *io)-' 

correspond to retarded ( r )  and advanced ( a )  Greenians. The v dependence of the 
unperturbed propagator (8) leads for v = 0 to the Keldysh matrix [ 11 structure 

and in the symmetric case v = p / 2  to 

G o , k l v = p , r  = a ( w ) G $ ; ( w ) u , a ( w )  

with 

Combining ( l ) ,  (4), ( 5 )  and (76) one gets the free generating functional 

(11) 

with the doublet f ( t )  = (,$')(r), X(')(r -iv)).  

limit to + ---CO and tb +CO the functional (1) can be factorised (cf [3-6, 81) as 
We now incorporate both site disorder and on-site interaction as in [SI. In the 

z[ f ,  = (1/z)z[x, w), g ( 2 ~ ~ z [ o ,  0; WJ, w7(4q 
= Z[ f ,  x; (e'", @2)]. (12) 
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This implies the normalisation Z[O,  0; %"', %e"'] = 1. The remaining Z [ z ,  ,y; % ' I ) ,  (e"'] 

stemming only from the horizontal segments can be expressed by 

9 C 9 c  exp[i(CG,'c+A,,,[C, c]+A,,,[C, c ] + & ~ ~ , y + f a , c ) ]  (13) 

in doublet notation with 

Here we specify 

[ n l i i (  t )ntf ' (r)  - nl : ' ( t  - iv)nlS ' ( f  - i v ) ]  (15) 

to the Gaussian distribution 

P ( E , )  = (1/27ry) exp(-e:/2y) 

and to Hubbard's interaction in terms of niv - c iv  c,, . There is no denominator 
problem. Weighting (13) by II, [de, P( ei)] . . . one finds the quenched-averaged gen- 
erating functional 

0 ) -  - (a i  ( a i  

Y m, X I  = Z[X,  XI/a,,.-A 

where 

To conclude, the path integral approach [8] to the dynamics of electrons within a 
random Hubbard model at finite temperature was extended to a variable (by the 
parameter v) time contour. Compare the free thermal propagator matrices: (i)  at 
arbitrary v, (8) is the exact Fermi counterpart to the corresponding Bose result in [9]; 
(i i)  at v = 0, (9) is in agreement with [7, 81; (iii) at v = p/2,  the form (10) resembles 
the free propagator of Dirac fermions in [4]. As shown in [9] the case v = p / 2  
corresponds to thermofield dynamics. In the zero-temperature limit, Go becomes 
triangular (diagonal) for v = 0 ( p / 2 ) .  Gaussian bond randomness around the non-zero 
average hopping may be included in the present formalism, where A in (16) becomes 
non-local via a new variance yv instead of y. We have formulated a general as well 
as a flexible frame to construct a real-time field theory for disordered thermal fermions. 
The one-parameter family of time paths covers both the Keldysh and the Niemi- 
Semenoff contours. This is a step towards a unified dynamic description. At first 
glance such a time path concept seems to be formal or artificial. The advantage of the 
dynamic approach to disordered interacting electron systems consists of the possibility 
of avoiding the denominator problem. Thus, the quenched average can be carried out 
directly on the generating functional without replica trick or supersymmetry method; 
the latter would be restricted to the non-interacting case. The price one pays is the 
doubling of the degrees of freedom, but this emerges naturally from the positive and 
negative time directions. Moreover, thermal effects are taken into account straightfor- 
wardly. The interplay between disorder and interaction is of particular interest for 
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electron localisation, itinerant spin glasses and  their mutual influence. Our resulting 
effective action may serve as a basis to establish, without resource to the replica method, 
order parameters in the form of dynamic Q-matrix fields. 

An interesting discussion with Professor L V Keldysh is gratefully acknowledged. 
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